Staff directory Giulio Rosati

Publications

2021

  • The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices

    Fuentes-Chust C., Parolo C., Rosati G., Rivas L., Perez-Toralla K., Simon S., de Lecuona I., Junot C., Trebicka J., Merkoçi A. Advanced Materials; 33 (18, 2006104) 2021. 10.1002/adma.202006104. IF: 27.398

    Monitoring of the human microbiome is an emerging area of diagnostics for personalized medicine. Here, the potential of different nanomaterials and nanobiosensing technologies is reviewed for the development of novel diagnostic devices for the detection and measurement of microbiome-related biomarkers. Moreover, the current and future landscape of microbiome-based diagnostics is defined by exploring the advantages and disadvantages of current nanotechnology-based approaches, especially in the context of developing point-of-care (PoC) devices that would meet the international guidelines known as REASSURED (Real-time connectivity; Ease of specimen collection; Affordability; Sensitivity; Specificity; User-friendliness; Rapid & robust operation; Equipment-free; and Deliverability). Finally, the strategies of the latest international scientific consortia working in this field are analyzed, the current microbiome diagnostics market are reported and the principal ethical, legal, and societal issues related to microbiome R&D and innovation are discussed. © 2021 Wiley-VCH GmbH


2020

  • Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy

    Sena-Torralba A., Ngo D.B., Parolo C., Hu L., Álvarez-Diduk R., Bergua J.F., Rosati G., Surareungchai W., Merkoçi A. Biosensors and Bioelectronics; 168 (112559) 2020. 10.1016/j.bios.2020.112559. IF: 10.257

    The ease of use, low cost and quick operation of lateral flow assays (LFA) have made them some of the most common point of care biosensors in a variety of fields. However, their generally low sensitivity has limited their use for more challenging applications, where the detection of low analytic concentrations is required. Here we propose the use of soluble wax barriers to selectively and temporarily accumulate the target and label nanoparticles on top of the test line (TL). This extended internal incubation step promotes the formation of the immune-complex, generating a 51.7-fold sensitivity enhancement, considering the limit of quantification, and up to 96% signal enhancement compared to the conventional LFA for Human IgG (H-IgG) detection. © 2020 Elsevier B.V.